Posts

Showing posts with the label Building Neural Networks with PyTorch

Chapter 4: Building Neural Networks with PyTorch

Image
Abstract : Building neural networks with PyTorch typically involves defining a model, preparing data, and then training the model. 1. Defining the Neural Network Model: Inherit from  nn.Module :  Create a class for your neural network that inherits from  torch.nn.Module . This provides essential functionality for managing layers and parameters. Initialize Layers in  __init__ :  Define the individual layers of your network (e.g.,  nn.Linear  for fully connected layers,  nn.Conv2d  for convolutional layers,  nn.ReLU  for activation functions) within the  __init__  method. Define Forward Pass in  forward :  Implement the  forward  method, which dictates how data flows through the defined layers to produce an output. Example of a simple feedforward network: Python import torch from torch import nn class SimpleNeuralNetwork (nn.Module): def __init__ ( self ): super().__init...