Posts

Showing posts with the label Data Handling with torch.utils.data

Chapter 5: Data Handling with torch.utils.data with PyTorch

Image
Abstract : PyTorch's  torch.utils.data  module provides essential tools for efficient and organized data handling, primarily through the  Dataset  and  DataLoader  classes. These abstractions streamline the process of loading, preprocessing, and feeding data into a model, especially for large or complex datasets.   1.  torch.utils.data.Dataset : Purpose:  This is an abstract class that represents a dataset. You typically create a custom dataset by subclassing  Dataset  and implementing two key methods: __len__(self) : Returns the total number of samples in the dataset. __getitem__(self, idx) : Retrieves a single sample and its corresponding label (or other target information) at the given index  idx . This is where you would load data from disk, apply transformations, and prepare it for your model. Example: Python import torch from torch.utils.data import Dataset class CustomImageDatas...