Special Annexure 5: PyTorch Best Practices & Industry Checklist

Abstract:

Below is your Special Annexure 5: PyTorch Best Practices & Industry Checklist — crafted to be professional, comprehensive, and suitable for inclusion in a technical textbook.
It contains best practices followed by AI engineers, researchers, and industry professionals to build reliable, efficient, and production-ready PyTorch models.


Special Annexure 5: PyTorch Best Practices & Industry Checklist

Guidelines for Efficient, Scalable, and Production-Ready Deep Learning Systems


Part A: PyTorch Best Practices (Training & Development)


1. Use GPU/TPU Efficiently

  • Always check for device availability:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

  • Move only necessary tensors to GPU.

  • For multi-GPU tasks, prefer Distributed Data Parallel (DDP) over DataParallel.


2. Prefer DataLoader with num_workers

  • Use efficient data loading:

    • num_workers = 2–8 depending on CPU

    • pin_memory=True for GPU training

  • Avoid expensive operations inside __getitem__.


3. Use Mixed Precision Training

  • Use AMP (torch.cuda.amp) to:

    • Reduce memory usage

    • Speed up training

  • Required for:

    • CNNs

    • Transformers

    • Large models


4. Use Checkpointing

Save:

  • model_state_dict

  • optimizer_state_dict

  • epoch

  • scheduler_state_dict

Enables complete recovery after interruption.


5. Use torch.no_grad() for Inference

Prevents gradient tracking during evaluation:

with torch.no_grad():
    pred = model(x)

Saves memory + improves inference speed.


6. Always Set Manual Seeds

Ensures reproducibility:

torch.manual_seed(42)
np.random.seed(42)
random.seed(42)

7. Use Standard Training Loop Template

Always include:

  • Zero gradients

  • Forward pass

  • Loss calculation

  • Backward

  • Step optimizer

  • Scheduler step

Consistency ensures fewer bugs.


8. Avoid In-Place Operations When Uncertain

Operations like:

x.relu_()

may interfere with autograd.
Use in-place operations only when certain of no gradient issues.


9. Move Computation to GPU, Not Data to CPU

Avoid unnecessary transfers:

  • Do preprocessing on CPU

  • Do forward + backward on GPU


10. Monitor GPU Memory

Use:

  • nvidia-smi

  • torch.cuda.memory_summary()

  • Gradient accumulation for large batches


Part B: PyTorch Best Practices (Model Design)


1. Modularize the Model

Split model into:

  • Encoder

  • Decoder

  • Head

  • Loss function

  • Utilities

Makes debugging and reuse easier.


2. Use Pretrained Models

Prefer pretrained weights for:

  • CV (ImageNet models)

  • NLP (BERT, RoBERTa)

  • Audio (Wav2Vec)

Benefits:

  • Faster training

  • Better accuracy

  • Smaller datasets


3. Always Use Batch Normalization or Layer Normalization

Improves:

  • Convergence

  • Stability

  • Generalization


4. Avoid Very Deep Networks Without Residuals

Residual connections prevent:

  • Vanishing gradients

  • Training instability


5. Prefer ReLU6, GELU, or SiLU in Modern Architectures

Modern activations:

  • Improve gradient flow

  • Increase accuracy

  • Reduce loss oscillation


Part C: PyTorch Best Practices (Debugging & Monitoring)


1. Use Gradient Checking

Check exploding gradients with:

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0)

2. Print Model Summary

Use:

from torchsummary import summary
summary(model, input_size=(3, 224, 224))

3. Use TensorBoard

For:

  • Loss tracking

  • Accuracy curves

  • Histograms

  • Graph visualization


4. Debug with hooks

Attach hooks to layers to debug:

  • Gradients

  • Outputs

  • Weights


5. Use torch.autograd.set_detect_anomaly(True)

Helps locate autograd errors by printing stack traces.


Part D: PyTorch Best Practices (Performance Optimization)


1. Use Efficient Data Formats

  • Use torchvision transforms for images

  • Use LMDB for large datasets

  • Use torchaudio’s fast signal transforms


2. Fuse Operations

Use TorchScript or JIT to:

  • Fuse convolution + batchnorm

  • Optimize activation sequences


3. Use DDP for Speed

DistributedDataParallel advantages:

  • Faster than DataParallel

  • Less overhead

  • Better scalability


4. Enable cudnn.benchmark

Improves speed for fixed input sizes:

torch.backends.cudnn.benchmark = True

5. Profile Your Model

Use:

  • torch.utils.bottleneck

  • PyTorch Profiler
    Identifies slow layers and I/O bottlenecks.


Part E: PyTorch Best Practices (Production Deployment)


1. Use TorchScript or ONNX

Benefits:

  • Platform independence

  • Hardware optimization

  • Mobile deployment (Android/iOS)


2. Wrap Model in FastAPI/Flask

Serve model predictions using:

  • REST API

  • JSON inputs

  • Batch inference


3. Use Model Quantization

Quantization types:

  • Dynamic

  • Static

  • Quantization-aware training

Reduces:

  • Model size

  • Latency

  • Power consumption


4. Use A/B Testing for Model Updates

Compare:

  • Old model

  • New model

Measure:

  • Accuracy

  • Response time

  • User engagement


5. Logging & Monitoring

Use:

  • MLflow

  • Weights & Biases

  • TensorBoard

Track:

  • Metrics

  • Model versions

  • Deployment logs


Part F: Industry Checklist (Ready-to-Use)


Development Phase Checklist

  • Set random seeds

  • Prepare train/val/test split

  • Implement DataLoader

  • Define model architecture

  • Add normalization layers


Training Phase Checklist

  • AMP mixed precision enabled

  • Proper optimizer selected

  • Learning rate scheduler applied

  • Gradient clipping if required

  • Checkpointing implemented

  • TensorBoard monitoring active


Evaluation Phase Checklist

  • Use torch.no_grad()

  • Calculate correct metrics

  • Compare against baseline

  • Perform error analysis


Production Phase Checklist

  • Convert to TorchScript or ONNX

  • Run latency and throughput tests

  • Implement logging and monitoring

  • Create FastAPI/Flask server

  • Setup automated CI/CD

  • Ensure model rollback version 

Comments