Appendix H: Best Coding Practices and Style Guidelines for PyTorch
Appendix H: Best Coding Practices and Style Guidelines for PyTorch
Writing clean, efficient, and maintainable PyTorch code is essential for building scalable machine learning projects. This appendix outlines recommended best practices, architectural guidelines, coding conventions, and workflow optimizations for PyTorch development.
1. Code Structure and Organization
A clean project structure improves readability and supports faster debugging.
1.1 Recommended Folder Structure
project/
│
├── data/ # datasets, raw and processed
├── models/ # model definitions (nn.Module files)
├── utils/ # helper functions (visualization, metrics)
├── configs/ # hyperparameters, settings
├── notebooks/ # experiments and prototyping
├── checkpoints/ # saved models
├── logs/ # training logs (TensorBoard, JSON)
└── train.py # training script
└── inference.py # testing/inference script
1.2 Keep Code Modular
Separate:
-
Data preprocessing
-
Model architecture
-
Training loop
-
Evaluation functions
Example:
from models.cnn import SimpleCNN
from utils.train import train_one_epoch
from utils.data import get_dataloader
2. Naming Conventions
2.1 Variables and Functions
-
snake_casefor variables/functions -
CamelCasefor classes -
Avoid single-letter names except math (e.g.,
x,y,z)
2.2 Good Examples
✔ train_one_epoch()
✔ compute_accuracy()
✔ CustomImageDataset
✔ learning_rate, batch_size
2.3 Bad Examples
✘ TrainFunction()
✘ acc()
✘ DS1, TmpVar, xysmp1
3. Best Practices for Creating Models
3.1 Use nn.Module Properly
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(784, 10)
def forward(self, x):
return self.fc(x)
3.2 Avoid Logic Inside forward()
Only include:
-
Layer operations
-
Activations
-
Simple reshaping
❌ Avoid: file I/O, prints, condition-heavy debugging
✔ Use hooks for debugging
3.3 Initialize Weights Explicitly (Optional)
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
model.apply(init_weights)
4. Device and Mixed Precision Management
4.1 Use a Consistent Device Assignment
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
4.2 Use Mixed Precision for Speed
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
with autocast():
output = model(x)
loss = criterion(output, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
4.3 Use .to(device) Instead of .cuda()
Better compatibility across systems.
5. Best Practices for Training Loops
5.1 Keep Training Loop Clean & Minimal
def train_one_epoch(model, dataloader, optimizer, criterion, device):
model.train()
for x, y in dataloader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y)
loss.backward()
optimizer.step()
5.2 Use Learning Rate Schedulers
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
scheduler.step()
5.3 Log Training Progress Frequently
Avoid printing per batch (too slow).
Print:
-
Epoch-level metrics
-
Loss trends
-
LR changes
6. Data Handling Best Practices
6.1 Use torchvision, torchtext, torchaudio
Prefer existing datasets and transforms.
6.2 Create Efficient Custom Datasets
class MyDataset(Dataset):
def __init__(self, files, transform=None):
self.files = files
self.transform = transform
def __getitem__(self, idx):
x = load_image(self.files[idx])
if self.transform:
x = self.transform(x)
return x
6.3 Set num_workers for dataloaders
num_workers = 2 × number of CPU cores is ideal
6.4 Use Caching When Possible
✔ Cache tokenized text
✔ Preload audio spectrograms
✔ Save preprocessed tensors on disk
7. Style Guidelines for Clean PyTorch Code
7.1 Avoid Hard-Coding Values
Bad:
nn.Linear(784, 256)
Good:
input_dim = 784
hidden_dim = 256
nn.Linear(input_dim, hidden_dim)
7.2 Avoid Using *args and **kwargs in Models
It makes debugging harder.
7.3 Document Everything
Use docstrings:
def train(...):
"""Train the model for one epoch."""
7.4 Keep Functions Short
One function = one task.
8. Version Control and Experiment Tracking
8.1 Use Git for Version Control
Commit:
-
Model versions
-
Training loops
-
Experimental configurations
8.2 Track Experiments
Tools:
-
TensorBoard
-
MLflow
-
Weights & Biases
-
Neptune.ai
Track:
-
Loss curves
-
Hyperparameters
-
Activation distributions
-
Confusion matrices
9. Performance Optimization Tips
9.1 Prefer Vectorized Operations Over Loops
Avoid Python loops in tensor operations.
9.2 Move Static Tensors to Device Once
tensor = torch.tensor([...], device=device)
9.3 Use with torch.no_grad() During Evaluation
Saves memory and speeds up inference.
9.4 Use pin_memory=True
DataLoader(..., pin_memory=True)
9.5 Profile Slow Code
Use PyTorch Profiler:
import torch.profiler as profiler
10. Testing, Validation, and Reproducibility
10.1 Set Random Seeds
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
10.2 Validate Every Component Independently
-
Test dataloader output
-
Test forward pass
-
Test loss computation
-
Test training on a small batch
10.3 Unit Test Custom Layers
Use pytest or simple assert statements.
11. Writing Reusable and Maintainable Code
11.1 Avoid Monolithic Scripts
Break into modules.
11.2 Use Config Files for Hyperparameters
learning_rate: 0.001
batch_size: 64
num_epochs: 30
model:
type: resnet18
11.3 Save Model States Properly
torch.save(model.state_dict(), "model.pth")
Conclusion
This appendix provided a comprehensive guide to writing clean, efficient, scalable PyTorch code. Following these best practices ensures:
-
Faster debugging
-
Reproducible experiments
-
Better code readability
-
Easier collaboration
-
More stable training pipelines
With consistent coding style and modular design, PyTorch projects remain manageable even as complexity grows.
Comments
Post a Comment
"Thank you for seeking advice on your career journey! Our team is dedicated to providing personalized guidance on education and success. Please share your specific questions or concerns, and we'll assist you in navigating the path to a fulfilling and successful career."