Annexure 7: PyTorch Templates and Boilerplates for All Common Tasks.
Abstract:
Below is the complete Annexure 7: PyTorch Templates and Boilerplates for All Common Tasks.
**ANNEXURE 7
PyTorch Templates and Boilerplates for All Common Tasks**
This annexure provides practical, ready-to-use templates for every major task performed in PyTorch—including data loading, model building, training loops, evaluation, saving/loading models, visualization, and deployment.
These templates are designed to be directly copy-paste ready for academic projects, production workflow, and fast prototyping.
1. Standard PyTorch Project Structure
A clean and reusable project folder format:
project/
│── data/
│── models/
│── utils/
│── train.py
│── inference.py
│── requirements.txt
2. Template: Device Configuration
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
3. Template: Dataset & DataLoader
3.1 Custom Dataset Template
from torch.utils.data import Dataset
class CustomDataset(Dataset):
def __init__(self, data, labels, transform=None):
self.data = data
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = self.data[idx]
y = self.labels[idx]
if self.transform:
x = self.transform(x)
return x, y
3.2 Image DataLoader (torchvision)
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
train_ds = datasets.ImageFolder("data/train", transform=transform)
train_loader = DataLoader(train_ds, batch_size=32, shuffle=True)
3.3 Text DataLoader (torchtext)
from torchtext.data.utils import get_tokenizer
from torch.utils.data import DataLoader
tokenizer = get_tokenizer("basic_english")
def collate_batch(batch):
texts, labels = zip(*batch)
tokens = [tokenizer(t) for t in texts]
return tokens, labels
loader = DataLoader(dataset, batch_size=16, collate_fn=collate_batch)
4. Template: Building Models
4.1 Basic Feedforward Neural Network
import torch.nn as nn
class FFN(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 64),
nn.ReLU(),
nn.Linear(64, 10)
)
def forward(self, x):
return self.layers(x)
4.2 CNN Template
class SimpleCNN(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc = nn.Sequential(
nn.Linear(64 * 56 * 56, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
return self.fc(x)
4.3 RNN / LSTM Template
class LSTMClassifier(nn.Module):
def __init__(self, vocab_size, embed_dim, hidden_size, num_classes):
super().__init__()
self.embed = nn.Embedding(vocab_size, embed_dim)
self.lstm = nn.LSTM(embed_dim, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.embed(x)
_, (h, _) = self.lstm(x)
return self.fc(h[-1])
5. Template: Training Loop (Standard)
def train(model, loader, loss_fn, optimizer, device):
model.train()
running_loss = 0
for batch_idx, (x, y) in enumerate(loader):
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
preds = model(x)
loss = loss_fn(preds, y)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(loader)
6. Template: Evaluation Loop
def evaluate(model, loader, loss_fn, device):
model.eval()
total, correct = 0, 0
running_loss = 0
with torch.no_grad():
for x, y in loader:
x, y = x.to(device), y.to(device)
preds = model(x)
loss = loss_fn(preds, y)
running_loss += loss.item()
_, predicted = torch.max(preds.data, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
accuracy = 100 * correct / total
return running_loss / len(loader), accuracy
7. Template: Training + Evaluation Together
for epoch in range(10):
train_loss = train(model, train_loader, loss_fn, optimizer, device)
val_loss, val_acc = evaluate(model, val_loader, loss_fn, device)
print(f"Epoch {epoch+1}: Train Loss={train_loss:.4f} | Val Loss={val_loss:.4f} | Val Acc={val_acc:.2f}%")
8. Template: Saving and Loading Models
8.1 Save Model
torch.save(model.state_dict(), "model.pth")
8.2 Load Model
model = MyModel()
model.load_state_dict(torch.load("model.pth", map_location=device))
model.to(device)
9. Template: Using TensorBoard
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_graph(model, images)
writer.close()
10. Template: Mixed Precision Training
scaler = torch.cuda.amp.GradScaler()
for x, y in loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
with torch.cuda.amp.autocast():
preds = model(x)
loss = loss_fn(preds, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
11. Template: Inference Script
model.eval()
with torch.no_grad():
x = image.to(device)
preds = model(x)
predicted_class = preds.argmax(1)
print("Prediction:", predicted_class.item())
12. Template: Creating Data Transforms
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize((128,128)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor()
])
13. Template: Exporting Model to ONNX
dummy = torch.randn(1, 3, 224, 224).to(device)
torch.onnx.export(model, dummy, "model.onnx")
14. Template: Deployment Using FastAPI
from fastapi import FastAPI
import torch
app = FastAPI()
model = torch.load("model.pth")
model.eval()
@app.post("/predict")
def predict(image_tensor):
with torch.no_grad():
preds = model(image_tensor)
return {"prediction": preds.argmax().item()}
15. Template: Distributed Data Parallel (DDP)
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
dist.init_process_group("nccl")
model = DDP(model.to(device))
16. Conclusion
This annexure provides every essential PyTorch boilerplate code snippet needed for:
-
Fast development
-
Academic assignments
-
Production-ready ML systems
-
Model training and deployment
-
Reproducible workflows
You can combine these templates to create end-to-end ML systems rapidly.
Comments
Post a Comment
"Thank you for seeking advice on your career journey! Our team is dedicated to providing personalized guidance on education and success. Please share your specific questions or concerns, and we'll assist you in navigating the path to a fulfilling and successful career."