Annexure 7: PyTorch Templates and Boilerplates for All Common Tasks.

Abstract:

Below is the complete Annexure 7: PyTorch Templates and Boilerplates for All Common Tasks.


**ANNEXURE 7

PyTorch Templates and Boilerplates for All Common Tasks**

This annexure provides practical, ready-to-use templates for every major task performed in PyTorch—including data loading, model building, training loops, evaluation, saving/loading models, visualization, and deployment.

These templates are designed to be directly copy-paste ready for academic projects, production workflow, and fast prototyping.


1. Standard PyTorch Project Structure

A clean and reusable project folder format:

project/
│── data/
│── models/
│── utils/
│── train.py
│── inference.py
│── requirements.txt

2. Template: Device Configuration

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)

3. Template: Dataset & DataLoader

3.1 Custom Dataset Template

from torch.utils.data import Dataset

class CustomDataset(Dataset):
    def __init__(self, data, labels, transform=None):
        self.data = data
        self.labels = labels
        self.transform = transform

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        x = self.data[idx]
        y = self.labels[idx]
        if self.transform:
            x = self.transform(x)
        return x, y

3.2 Image DataLoader (torchvision)

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

train_ds = datasets.ImageFolder("data/train", transform=transform)
train_loader = DataLoader(train_ds, batch_size=32, shuffle=True)

3.3 Text DataLoader (torchtext)

from torchtext.data.utils import get_tokenizer
from torch.utils.data import DataLoader

tokenizer = get_tokenizer("basic_english")

def collate_batch(batch):
    texts, labels = zip(*batch)
    tokens = [tokenizer(t) for t in texts]
    return tokens, labels

loader = DataLoader(dataset, batch_size=16, collate_fn=collate_batch)

4. Template: Building Models

4.1 Basic Feedforward Neural Network

import torch.nn as nn

class FFN(nn.Module):
    def __init__(self):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 64),
            nn.ReLU(),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        return self.layers(x)

4.2 CNN Template

class SimpleCNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(3, 32, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.fc = nn.Sequential(
            nn.Linear(64 * 56 * 56, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        return self.fc(x)

4.3 RNN / LSTM Template

class LSTMClassifier(nn.Module):
    def __init__(self, vocab_size, embed_dim, hidden_size, num_classes):
        super().__init__()
        self.embed = nn.Embedding(vocab_size, embed_dim)
        self.lstm = nn.LSTM(embed_dim, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        x = self.embed(x)
        _, (h, _) = self.lstm(x)
        return self.fc(h[-1])

5. Template: Training Loop (Standard)

def train(model, loader, loss_fn, optimizer, device):
    model.train()
    running_loss = 0

    for batch_idx, (x, y) in enumerate(loader):
        x, y = x.to(device), y.to(device)

        optimizer.zero_grad()
        preds = model(x)
        loss = loss_fn(preds, y)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    return running_loss / len(loader)

6. Template: Evaluation Loop

def evaluate(model, loader, loss_fn, device):
    model.eval()
    total, correct = 0, 0
    running_loss = 0

    with torch.no_grad():
        for x, y in loader:
            x, y = x.to(device), y.to(device)
            preds = model(x)
            loss = loss_fn(preds, y)
            running_loss += loss.item()

            _, predicted = torch.max(preds.data, 1)
            total += y.size(0)
            correct += (predicted == y).sum().item()

    accuracy = 100 * correct / total
    return running_loss / len(loader), accuracy

7. Template: Training + Evaluation Together

for epoch in range(10):
    train_loss = train(model, train_loader, loss_fn, optimizer, device)
    val_loss, val_acc = evaluate(model, val_loader, loss_fn, device)

    print(f"Epoch {epoch+1}: Train Loss={train_loss:.4f} | Val Loss={val_loss:.4f} | Val Acc={val_acc:.2f}%")

8. Template: Saving and Loading Models

8.1 Save Model

torch.save(model.state_dict(), "model.pth")

8.2 Load Model

model = MyModel()
model.load_state_dict(torch.load("model.pth", map_location=device))
model.to(device)

9. Template: Using TensorBoard

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter()

writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_graph(model, images)
writer.close()

10. Template: Mixed Precision Training

scaler = torch.cuda.amp.GradScaler()

for x, y in loader:
    x, y = x.to(device), y.to(device)
    optimizer.zero_grad()

    with torch.cuda.amp.autocast():
        preds = model(x)
        loss = loss_fn(preds, y)

    scaler.scale(loss).backward()
    scaler.step(optimizer)
    scaler.update()

11. Template: Inference Script

model.eval()
with torch.no_grad():
    x = image.to(device)
    preds = model(x)
    predicted_class = preds.argmax(1)
    print("Prediction:", predicted_class.item())

12. Template: Creating Data Transforms

from torchvision import transforms

transform = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.ToTensor()
])

13. Template: Exporting Model to ONNX

dummy = torch.randn(1, 3, 224, 224).to(device)
torch.onnx.export(model, dummy, "model.onnx")

14. Template: Deployment Using FastAPI

from fastapi import FastAPI
import torch

app = FastAPI()
model = torch.load("model.pth")
model.eval()

@app.post("/predict")
def predict(image_tensor):
    with torch.no_grad():
        preds = model(image_tensor)
    return {"prediction": preds.argmax().item()}

15. Template: Distributed Data Parallel (DDP)

import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl")
model = DDP(model.to(device))

16. Conclusion

This annexure provides every essential PyTorch boilerplate code snippet needed for:

  • Fast development

  • Academic assignments

  • Production-ready ML systems

  • Model training and deployment

  • Reproducible workflows

You can combine these templates to create end-to-end ML systems rapidly.



Comments